Nitroxyl-mediated disulfide bond formation between cardiac myofilament cysteines enhances contractile function.

نویسندگان

  • Wei Dong Gao
  • Christopher I Murray
  • Ye Tian
  • Xin Zhong
  • Jenna F DuMond
  • Xiaoxu Shen
  • Brian A Stanley
  • D Brian Foster
  • David A Wink
  • S Bruce King
  • Jennifer E Van Eyk
  • Nazareno Paolocci
چکیده

RATIONALE In the myocardium, redox/cysteine modification of proteins regulating Ca(2+) cycling can affect contraction and may have therapeutic value. Nitroxyl (HNO), the one-electron-reduced form of nitric oxide, enhances cardiac function in a manner that suggests reversible cysteine modifications of the contractile machinery. OBJECTIVE To determine the effects of HNO modification in cardiac myofilament proteins. METHODS AND RESULTS The HNO-donor, 1-nitrosocyclohexyl acetate, was found to act directly on the myofilament proteins, increasing maximum force (F(max)) and reducing the concentration of Ca(2+) for 50% activation (Ca(50)) in intact and skinned cardiac muscles. The effects of 1-nitrosocyclohexyl acetate are reversible by reducing agents and distinct from those of another HNO donor, Angeli salt, which was previously reported to increase F(max) without affecting Ca50. Using a new mass spectrometry capture technique based on the biotin switch assay, we identified and characterized the formation by HNO of a disulfide-linked actin-tropomyosin and myosin heavy chain-myosin light chain 1. Comparison of the 1-nitrosocyclohexyl acetate and Angeli salt effects with the modifications induced by each donor indicated the actin-tropomyosin and myosin heavy chain-myosin light chain 1 interactions independently correlated with increased Ca(2+) sensitivity and force generation, respectively. CONCLUSIONS HNO exerts a direct effect on cardiac myofilament proteins increasing myofilament Ca(2+) responsiveness by promoting disulfide bond formation between critical cysteine residues. These findings indicate a novel, redox-based modulation of the contractile apparatus, which positively impacts myocardial function, providing further mechanistic insight for HNO as a therapeutic agent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitroxyl(HNO)-Mediated Disulfide Bond Formation Between Cardiac Myofilament Cysteines Enhances Contractile Function

Department of Anesthesiology and Critical Care Medicine, Department of Biological Chemistry, Johns Hopkins University School of Medicine; Baltimore MD, 21205 USA; Department of Pathophysiology, Harbin Medical University, 150086, China; Department of Chemistry, Wake Forest University, WinstonSalem, NC, 27109, USA; Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine; ...

متن کامل

Accessibility of Myofilament Cysteines and Effects on ATPase Depend on the Activation State during Exposure to Oxidants

Signaling by reactive oxygen species has emerged as a major physiological process. Due to its high metabolic rate, striated muscle is especially subject to oxidative stress, and there are multiple examples in cardiac and skeletal muscle where oxidative stress modulates contractile function. Here we assessed the potential of cysteine oxidation as a mechanism for modulating contractile function i...

متن کامل

HNO enhances SERCA2a activity and cardiomyocyte function by promoting redox-dependent phospholamban oligomerization.

AIMS Nitroxyl (HNO) interacts with thiols to act as a redox-sensitive modulator of protein function. It enhances sarcoplasmic reticular Ca(2+) uptake and myofilament Ca(2+) sensitivity, improving cardiac contractility. This activity has led to clinical testing of HNO donors for heart failure. Here we tested whether HNO alters the inhibitory interaction between phospholamban (PLN) and the sarcop...

متن کامل

Articles Probing the Dark State Tertiary Structure in the Cytoplasmic Domain of Rhodopsin: Proximities between Amino Acids Deduced from Spontaneous Disulfide Bond Formation between Cys316 and Engineered Cysteines in Cytoplasmic Loop 1†,‡

A dark state tertiary structure in the cytoplasmic domain of rhodopsin is presumed to be the key to the restriction of binding of transducin and rhodopsin kinase to rhodopsin. Upon light-activation, this tertiary structure undergoes a conformational change to form a new structure, which is recognized by the above proteins and signal transduction is initiated. In this and the following paper in ...

متن کامل

Slow skeletal troponin I gene transfer, expression, and myofilament incorporation enhances adult cardiac myocyte contractile function.

The functional significance of the developmental transition from slow skeletal troponin I (ssTnI) to cardiac TnI (cTnI) isoform expression in cardiac myocytes remains unclear. We show here the effects of adenovirus-mediated ssTnI gene transfer on myofilament structure and function in adult cardiac myocytes in primary culture. Gene transfer resulted in the rapid, uniform, and nearly complete rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 111 8  شماره 

صفحات  -

تاریخ انتشار 2012